If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (4.9t2) + 340t + -2720 = 0 Reorder the terms: -2720 + 340t + (4.9t2) = 0 Solving -2720 + 340t + (4.9t2) = 0 Solving for variable 't'. Begin completing the square. Divide all terms by 4.9 the coefficient of the squared term: Divide each side by '4.9'. -555.1020408 + 69.3877551t + t2 = 0 Move the constant term to the right: Add '555.1020408' to each side of the equation. -555.1020408 + 69.3877551t + 555.1020408 + t2 = 0 + 555.1020408 Reorder the terms: -555.1020408 + 555.1020408 + 69.3877551t + t2 = 0 + 555.1020408 Combine like terms: -555.1020408 + 555.1020408 = 0.0000000 0.0000000 + 69.3877551t + t2 = 0 + 555.1020408 69.3877551t + t2 = 0 + 555.1020408 Combine like terms: 0 + 555.1020408 = 555.1020408 69.3877551t + t2 = 555.1020408 The t term is 69.3877551t. Take half its coefficient (34.69387755). Square it (1203.665139) and add it to both sides. Add '1203.665139' to each side of the equation. 69.3877551t + 1203.665139 + t2 = 555.1020408 + 1203.665139 Reorder the terms: 1203.665139 + 69.3877551t + t2 = 555.1020408 + 1203.665139 Combine like terms: 555.1020408 + 1203.665139 = 1758.7671798 1203.665139 + 69.3877551t + t2 = 1758.7671798 Factor a perfect square on the left side: ((t) + 34.69387755)((t) + 34.69387755) = 1758.7671798 Calculate the square root of the right side: 41.937658254 Break this problem into two subproblems by setting ((t) + 34.69387755) equal to 41.937658254 and -41.937658254.Subproblem 1
(t) + 34.69387755 = 41.937658254 Simplifying (t) + 34.69387755 = 41.937658254 t + 34.69387755 = 41.937658254 Reorder the terms: 34.69387755 + t = 41.937658254 Solving 34.69387755 + t = 41.937658254 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-34.69387755' to each side of the equation. 34.69387755 + -34.69387755 + t = 41.937658254 + -34.69387755 Combine like terms: 34.69387755 + -34.69387755 = 0.00000000 0.00000000 + t = 41.937658254 + -34.69387755 t = 41.937658254 + -34.69387755 Combine like terms: 41.937658254 + -34.69387755 = 7.243780704 t = 7.243780704 Simplifying t = 7.243780704Subproblem 2
(t) + 34.69387755 = -41.937658254 Simplifying (t) + 34.69387755 = -41.937658254 t + 34.69387755 = -41.937658254 Reorder the terms: 34.69387755 + t = -41.937658254 Solving 34.69387755 + t = -41.937658254 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-34.69387755' to each side of the equation. 34.69387755 + -34.69387755 + t = -41.937658254 + -34.69387755 Combine like terms: 34.69387755 + -34.69387755 = 0.00000000 0.00000000 + t = -41.937658254 + -34.69387755 t = -41.937658254 + -34.69387755 Combine like terms: -41.937658254 + -34.69387755 = -76.631535804 t = -76.631535804 Simplifying t = -76.631535804Solution
The solution to the problem is based on the solutions from the subproblems. t = {7.243780704, -76.631535804}
| 42=-2(22-m)+3(m-3) | | 8x-7+x=5x+21 | | (4y+9)(4+y)=0 | | x-27-5x=17 | | (15-2x)(12-2x)=108 | | z+5=11 | | d=rxt | | 6-2(x+3)=4x+12 | | -11w-6=5 | | -10x=6.4 | | 2.6q-3.8-4.4q=-.08q-3.8 | | -4x-2x-40=20 | | 4u-3=-11 | | 5-(-8x)=11 | | -16+5x=-7(-6+8x)-3 | | 2(x+3)=8(x-2)-20 | | -.5t^2-3t-4=0 | | -20=-5+5u | | 2-(-6x)=5 | | 8x-(4x+5)=23 | | -10p+-100=25 | | 2x-(-7)=1 | | 5a+(2a-5)+(a-3)=16 | | 2*(2a+3)-5a= | | 4(y+3/2)=-18 | | x^2-0x-16=0 | | 5x-(-3)=2 | | 6x-180=90-x | | x^2=6x-16 | | x/150=15 | | 1-(-9x)=4 | | .22a=.67 |